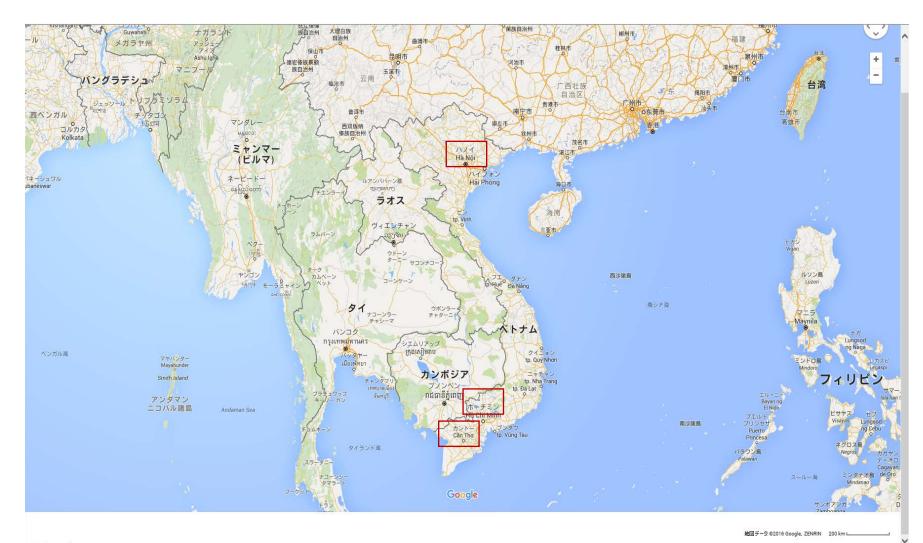
札幌遠友夜学校記念館建設支援 一連続講座一 2022年11月8日(火)

途上国の自然災害と人々の暮らし -ベトナム・メコンデルタの事例から-

> 農学研究院·農資源経済学研究室 齋藤陽子(講師)

国際食資源学院へようこそ!?

国際食資源学院は開学7年目となりました。ワンダーフォーゲル実習とよぶ海外実習があり、フィールドを重視する大学院です。


今日は、ベトナムで実施した院生との調査に同 行して頂ければと思います。

ようこそメコンデルタへ

フィールドから実証分析へ

課題発見

フィールドから、様々な課題を抽出 塩害、出稼ぎ労働、自然災害、気候変動

実証分析

大規模世帯データを使って実証的に分析

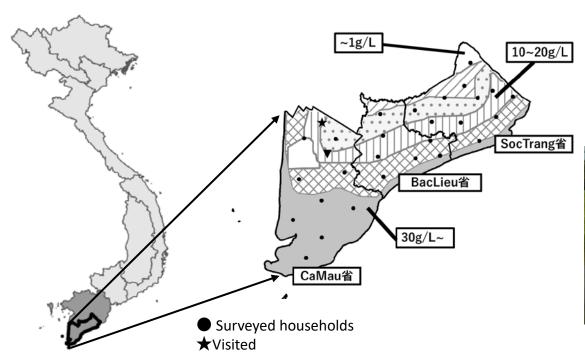
解決

GHG排出権取引などの政策オプション

エビ養殖と稲作の複合経営 (家族経営の場合)

商業的な大規模エビ養殖経営

耐塩性稲の選抜



塩分濃度のモニタリング

浮力による塩分濃 度のモニタリング

メコンデルタの塩害

和作

雨季のエビ養殖と稲作の複合経営 (ベトナム・カマウ省)

乾季の塩類浸潤レベル(g/L)

イネの耐塩性は、今のところ最大で5-6 g/L.

稲作とエビ養殖の複合経営

表 1. 調査農家の年間営農概況

	雨季						乾季					
月	7	8	9	10	11	12	1	2	3	4	5	6
降水量(mm)	366	347	328.5	387.6	211.5	64.3	27.4	19.4	27.6	105.6	238.5	340.2
塩類濃度(g/L)	-	-	-	-	-	-	-	20-22	23-25	25-28	25-28	-
コメ					,	\rightarrow						

ブラックタイガー 🕳

テナガエビ

注)VAWR(2016)ベトナム水資源アカデミー,メコンデルタの河口における塩分侵入と旱魃防止策の提案報告

注)塩類濃度は調査地域付近で塩類浸潤の測定地点である KhanhHoa での乾季(2月~5月)の最高値のデータを使用した

調査農家の農業収入

	稲作	エビ養殖 (ブラックタイガー)
単収(kg/ha)	4,500	250
収量(kg/年)	9,450	1,050
自家消費(kg)	2,000	0
販売価格(VND/kg)	5,000	145,000
収入(千VND)	37,250	152,250
収入(USD)	1,600	6,538

聞き取り先農家はカマウ省で稲作・エビ養殖の複合経営を行う農家Aで、農地面積は3ha、うち2.1haでエビ養殖と稲作を行い、残りの0.9haは自家消費野菜・果樹の栽培を行う。

稲作とエビ養殖の複合経営

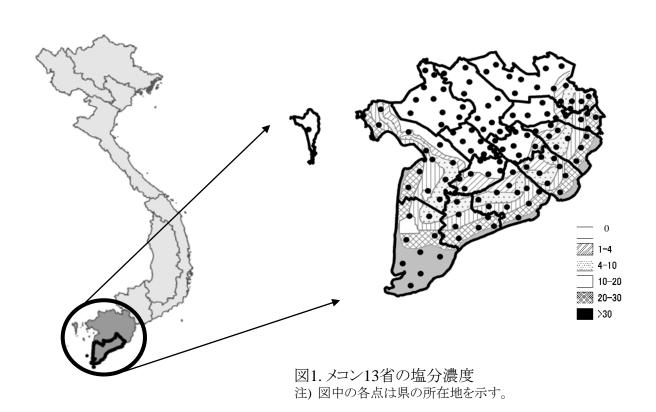
表 1. 調査農家の年間営農概況

	雨季								乾季				
月	7	8	9	10	11	12	1	2	3	4	5	6	
 降水量(mm)	366	347	328.5	387.6	211.5	64.3	27.4	19.4	27.6	105.6	238.5	340.2	
	-	-	-	-	-	-	-	20-22	23-25	25-28	25-28	-	
コメ	-				•	→							
ブラックタイガー							深	刻な干	ばつに	こよる被	と害 (201	5)	
テナガエビ					,								

注)VAWR(2016)ベトナム水資源アカデミー,メコンデルタの河口における塩分侵入と旱魃防止等 提案報告

注)塩類濃度は調査地域付近で塩類浸潤の測定地点である KhanhHoa での乾季(2 月~5 月)の最高値 データを使用した

収入補填のため、ホーチミン周辺の工業地域へ季節労働などの出稼ぎへ


エルニーニョの影響が甚大化し、海水の塩分濃度を超え、エビが死滅

乾季のエビ養殖収入を失う

大規模世帯調査結果から

メコンデルタの13省を対象に

塩類浸潤程度及び収入階層別の送金依存度(単位:%)

		J			
		貧困層	準貧困 層	その 他	計
	~.1 <i>a</i> /l	99	52	791	942
	~1g/L	20.8	37.8	5.6	9.9
	10/10/1	18	13	161	192
塩	1∼4g/L	13.7	24.5	7.9	9.8
塩類浸潤程度	10.10.4	33		191	243
潤	4∼10g/L	8.2	23.5	5.2	7.9
度	10~	25	10	151	186
	20g/L	20g/L 19.8 18.3		6.6	8.9
	20g/l ox	56	28	258	342
	20g/L∼	22.0	25.7	5.4	10.3
	計	231	122	1,552	1,905
~ W\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		18.8	30.1	6.1	

塩類浸潤程度が上昇すると出稼ぎ者のいる世帯の割合が上昇する。

資料) VHLSS(2014)より作成。

注)上段は世帯数・下段は送金が所得に占める割(%)を表している

塩分濃度が1g/L上昇すると?

収入主体別要約統計量

表 1. 収入主体別要約統計量										
	賃金収入主体 (n=1,137)		<mark>稲作主体</mark> (n=387)		水 <u>産</u> 主体 (n=130)		<mark>主体</mark> なし (n=246)		その他主体 (n=3)	
	平均	標準 偏差	平均	標準偏 差	平均	標準 偏差	平均	標準偏 差	平均	標準偏 差
世帯所得(千万VND)	26.5	27.8	6.5	9.4	9.2	14.4	0.4	2.7	22.2	20.0
塩害レベル(g/L)	6.7	9.7	5.6	8.3	20.2	12.7	7.6	10.4	0.8	1.4
世帯主の教育年数(年)	6.2	4.3	6.0	3.3	4.8	3.1	5.9	3.9	8.0	3.0
世帯員数(人)	4.0	1.5	3.6	1.5	3.8	1.5	3.0	1.6	4.3	1.5
労働移動あり (世帯数と割合)	146 (12.8%)		97 (25.1%)		20 (15.4%)		34 (13.8%)		0 (0%)	

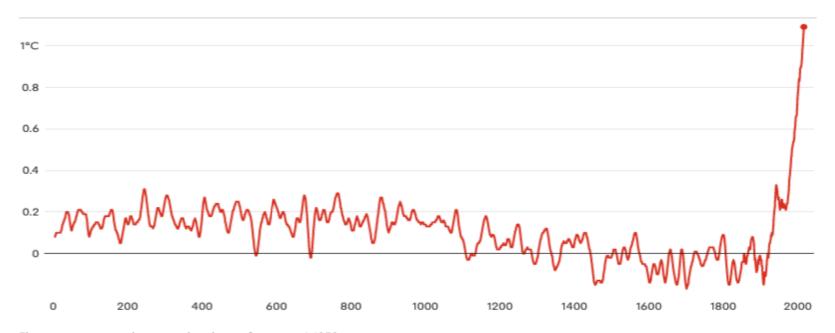
塩類浸潤程度(salinity)上昇による労働移動の選択確率

$$d_{-}mig_{i} = f(X_{hh}, X_{agr}, X_{env}, X_{prov})$$
 (1)

$$\begin{aligned} d_{remit_i} &= \beta_0 + \beta_1 \ income_i + \beta_2 \ edu_i + \beta_3 \ n_f amily_i \\ + \beta_4 \ d_w age_i + \beta_5 \ d_r ice_i + \beta_6 \ d_a qua_i + \beta_7 \ d_n o_i \\ + \beta_8 \ salinity + \beta_9 \ sal_{wage_i} + \beta_{10} \ sal_{rice_i} + \\ \beta_{11} \ sal_{aqua_i + \beta_{12}} sal_{no_i} + \beta_{Prov} \ province_i + \varepsilon_i \end{aligned} \tag{2}$$

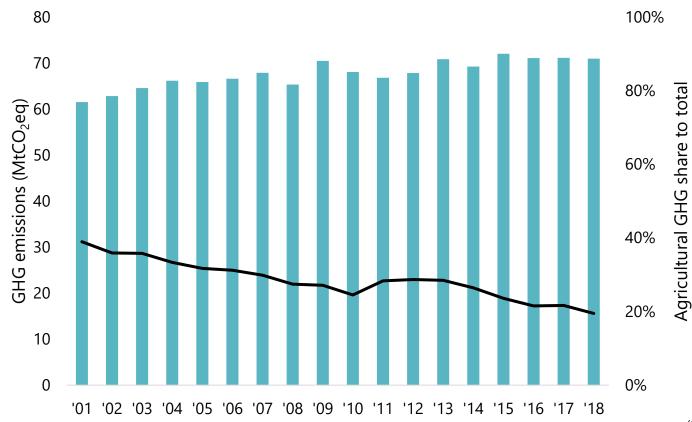
表3 収入主体別の限界効果								
	限界効果		標準誤差					
賃金労働	0.105	***	0.009					
稲作主体	0.230	***	0.021					
水産主体	0.131	***	0.028					
主体無し	0.118	***	0.021					

稲作や養殖など、自然資本への依存度が高い世帯の限界効果が高い。


予察情報や耐塩性の高い稲の普及が急務

温室効果ガス排出削減に向けて

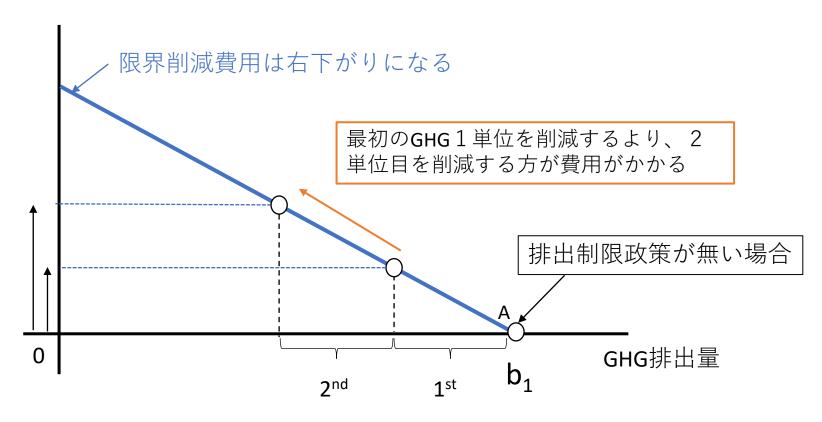
気温の変化


Change in global surface temperature (decadal average) as reconstructed (1-1850) and observed (1850-2020)

Figures represent the central estimate for years 1-1850 Source: Intergovernmental Panel on Climate Change

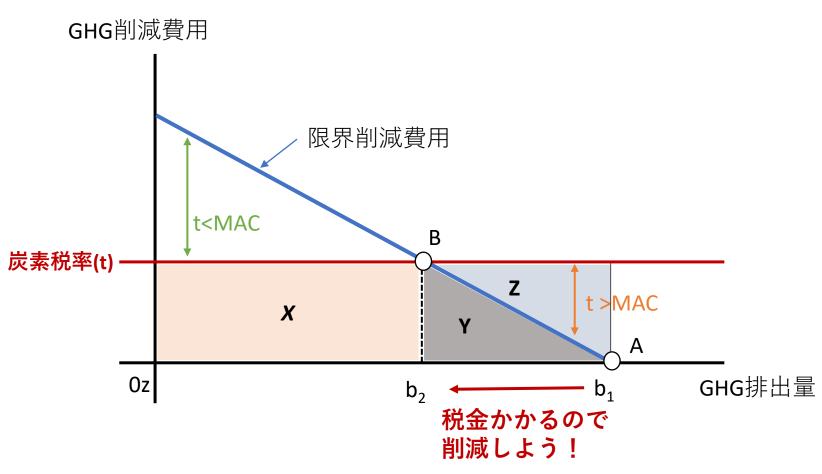
Source: IPCC report

温室効果ガス(GHG)の排出量と農業の割合(ベトナム)

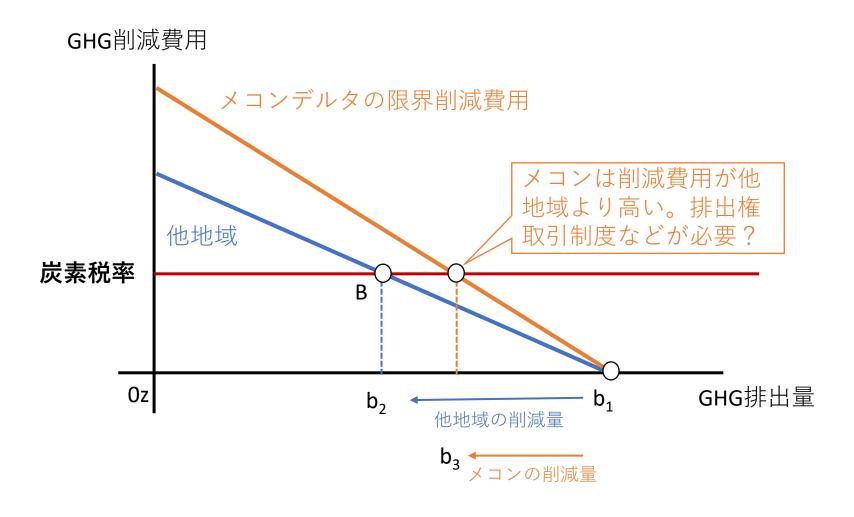


(Climate watch data, 2021)

農業の割合は減少傾向にあるが、主たる 排出源であることに変わりはない。


環境経済学アプローチ:限界削減費用

GHG削減費用


Thanpapillai and Sinden, 2013

限界削減費用と炭素税

Thanpapillai and Sinden, 2013

限界削減費用と炭素税

ご清聴ありがとうございました

参考文献

Thanpapillai and Sinden, Environmental Economics –Concepts, Methods, and Policies-, Oxford University Press, 2013.

Aito YAMAMOTO, Thi Kim Uyen HUYNH, Yoko SAITO and Takashi Fritz MATSUISHI Assessing the cost of the GHG emissions of multi-product agricultural systems in Vietnam. *Scientific Reports*(forthcoming)

岡千尋,フン・ティ・キム・ユン,ティ・フオン・ドン・クウ,齋藤陽子 気候変動に起因する労働移動の選択—メコンデルタにおける農業生産形態の違いに注目して—.フロンティア農業経済研究 24(2), 印刷中(2022)

齋藤陽子, 岡千尋, ティ・フオン・ドン・クウ メコンデルタの塩害と労働移動-塩害地図と世帯調査結果から- 伊東正一編著「世界のジャポニカ米市場と日本産米の競争力」(2015)